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Abstract

Understanding causality has the potential to im-
prove robustness, fairness, and interpretability
of Natural Language Processing (NLP) mod-
els. In this work, we focus on the task of
model-based causal reasoning (CR) and con-
ceptual explanation generation (EG) for causal
facts. We train and evaluate numerous language
models for both tasks using the recently de-
veloped human-annotated explainable CAusal
REasoning (e-CARE) dataset. However we fo-
cus more on explanation generation and explore
techniques such as prompting, multitask learn-
ing, question generation and answering. We
found that neural knowledge graph based ap-
proach COMET results in significant improve-
ment in causal explanation generation. Our
code is available on GitHub1.

1 Introduction

The field of Natural Language Processing (NLP)
has been observing remarkable growth due to the in-
troduction of several high-capacity neural architec-
tures such as BERT (Devlin et al., 2019), which are
able extract correlations from large-scale datasets.
However, these models make no distinction be-
tween causes, effects, or confounders, and they
make no attempt to identify causal relationships.
This may lead to these largely correlational mod-
els to be untrustworthy in their predictions (Jacovi
et al., 2021). By being heavily reliant on spuri-
ous correlations, these models may perform poorly
across different groups of users (Zhao et al., 2017)
or in out-of-distribution (OOD) settings (McCoy
et al., 2019). Feder et al. (2022) suggested that
these shortcomings can be addressed by the causal
perspective.

Causal reasoning is central to human intelligence
(Waldmann and Hagmayer, 2013). By reasoning
about the observed facts around them, humans are

1https://github.com/fly-back/e-CARE

able to use causal knowledge as the basis of predic-
tions, decision making, problem solving, and more.
Understanding this reasoning capability is key to
allowing complex models to reason like humans,
and make robust and explainable decisions.

There have been multiple attempts to build
causal reasoning models for specific tasks, such
as controllable text generation (Hu and Li, 2021),
named entity recognition (Zeng et al., 2020), and
information extraction (Nan et al., 2021), and un-
covering biases in visual question answering (Niu
et al., 2021). However, their performances still lag
far behind humans, are susceptible to adversarial
attacks (McCoy et al., 2019).

Du et al. (2022) speculated that causal reason-
ing models lag behind humans because humans
naturally have a deep conceptual understanding
of causality and can explain observed causal facts
based on world knowledge, while most causal rea-
soning models only learn to induce empirical causal
patterns predictive to a specific label (such as cause-
effect, entailment, contradiction, etc.). On the other
hand, conceptual explanations of causal patters can
help a model in the reasoning process, much like
chain of thought prompting has been shown to
elicit reasoning capabilities (Wei et al., 2022). To
this extent, they introduced the explainable CAusal
REasoning (e-CARE) dataset, which contains over
21K multiple-choice causal reasoning questions
and over 13K unique conceptual explanations about
the deep understanding of the causal facts.

In this work, we reproduce the current state-of-
the-art models on this dataset and thoroughly eval-
uate their performance. Further, based on our error
analysis and evaluation of previous literature, we
identify some methods to address the limitations
presented by the models and plan to attempt these
in a future work. These methods include using
CausalBERT, abductive commonsense reasoning,
prompt-based fine-tuning, and question answering.

https://github.com/fly-back/e-CARE


2 Related work

2.1 Causal reasoning in NLP
The main goal of causal reasoning is to understand
the general causal dependency between common
events or actions. This understanding is essen-
tially equivalent to measuring the plausibility of
one event statistically leading to another.

For this, Luo et al. (2016) proposed a frame-
work to deduce causality by harvesting a causal-
ity network (CausalNet) from a cause-effect sen-
tence pairs dataset (Roemmele et al., 2011). Their
method was quite simple, to build a graph with
nodes representing unigrams and edges represent-
ing directed co-occurrences of the two words in
a cause-effect sentence pair. Thus, the graph en-
codes how many times a word wi in cause causes
a word wj to be in the effect.

Ning et al. (2018) suggests that identifying both
temporal and causal relations between events is a
fundamental natural language understanding task.
They propose a novel Temporal and Causal Rea-
soning (TCR) framework which jointly extracts
temporal and causal relations, which involves a con-
strained conditional model (CCM) (Chang et al.,
2012) and an integer linear programming (ILP) ob-
jective (Roth and Yih, 2004) to enforce declarative
constraints, such as how a cause must temporally
precede its effect, during the inference phrase.

The Choice of Plausible Alteratives (COPA)
dataset (Roemmele et al., 2011) propose a causal
inference task formulated closely to a multiple
choice question-answering, where the question is a
premise and the choices are two hypothesis, one be-
ing more plausible than the other. This dataset has
been a widely used benchmark for causal reasoning
models.

Since causal reasoning is widely used to under-
stand and explain model decisions, they are com-
monly found in models used in critical decision
making settings. De Choudhury et al. (2016) used
the propensity score matching to understand the
causal relationship between linguistic and social
interaction-based measures on Reddit text and sui-
cide attempt. Finally, the randomized controlled
trial (RCT) method (McGovern, 2001) was used
to understand how the gender or racial identity of
the judge affects the text of legal rulings (Gill and
Hall, 2015). Therefore, improving the reasoning
ability of causal models will not only benefit the
NLP community, but also encourage the progress
of other intersectional fields as well.

2.2 Explanation generation of causal facts

Motivated by the fact that humans do not learn
solely from supervised labeled examples supplied
by a teacher, but by seeking conceptual understand-
ing of a task through both demonstrations and
explanations, Camburu et al. (2018) collected e-
SNLI, a large corpus of human-annotated explana-
tions for the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015). In addi-
tion to providing explanations, the annotators also
highlighted words which are considered to be es-
sential for the label. These highlighted words in the
e-SNLI dataset are also used as a part of the Eval-
uation Rationales And Simple English Reasoning
(ERASER) benchmark proposed by DeYoung et al.
(2019), which contains a unified set of diverse NLP
datasets containing human rationales for decisions.

Camburu et al. (2018) trained models on the
e-SNLI dataset and gauge for their ability for mul-
tiple tasks, such as the ability to predict a label
and generate an explanation for the predicted label
(PREDICTANDEXPLAIN). For this task, they have
used the InferSent architecture and conditioned the
explanation on the label, and prepend the label as a
word at the beginning of the explanation. Although
they achieved a reasonable performance, we can
notice from figure 1 that the gold-standard explana-
tions mainly contain words from the premise and
hypothesis, and do not reason about the label con-
ceptually or beyond how the premise implies/does
not imply the hypothesis. Therefore, the gener-
ated explanations would most likely be unable to
generate conceptual explanations of the causal re-
lationship between the premise and hypothesis.

Figure 1: An example instance from e-SNLI with
human-annotated explanations. The highlighted words are

words annotators considered essential for the label.

One might argue that to generate conceptual ex-
planations, we will need to imbue external knowl-
edge to the model to be used to reason about how
a causal relationship is established. Inspired by
the concept of abductive reasoning, or inference to
the most plausible explanation, Bhagavatula et al.
(2019) introduced a challenge dataset, ART, which
consists of over 20k commonsense narrative con-
texts and 200k human explanations. They also
introduced two subtasks related to abductive com-



monsense reasoning, namely (1) Abductive Natural
Language Inference (aNLI), which is a multiple-
choice question answering task for chooisng the
more likely explanation, and (2) Abductive Natural
Language Generation (aNLG), which is a condi-
tional generation task for explaining given observa-
tions in natural language. For the latter task, they
used ATOMIC (Sap et al., 2019) as their knowl-
edge base for commonsense reasoning, a repository
of inferential if-then knowledge as a natural source
of background commonsense to reason about the
narrative context in the ART dataset. ATOMIC is
not directly compatible with a neural model, there-
fore they utilize COMET (Bosselut et al., 2019), a
transformer model trained on ATOMIC that gen-
erates nine commonsense inferences of events in
natural language.

3 Methodology

3.1 Dataset

In this work, we use the e-CARE (Du et al., 2022)
dataset, which is the largest human-annotated
causal reasoning dataset containing over 21K pairs
of causal reasoning questions and their correspond-
ing natural language explanations. Each instance
of the e-CARE dataset consists of two components:
(1) a multiple-choice causal reasoning question
which contains a premise and two hypotheses, with
one of the hypotheses forming a valid causal fact
with the premise, and (2) free-text-formed concep-
tual explanations to explain why the causation ex-
ists. Additionally, the instance also contains an ask-
for indicator which decides whether the premise or
the candidate hypothesis to be the cause or effect,
respectively.

3.2 Task description

In this work, we will attempt to improve the bench-
marks on the tasks introduced by the authors of
the e-CARE dataset, namely causal reasoning and
explanation generation. An overview of the tasks
and desired results from an instance of the e-CARE
dataset is shown in figure 2.

3.2.1 Causal reasoning task
The causal reasoning task is formulated as a
multiple-choice task to choose the hypothesis
which forms a valid causal fact with the premise.
For example, in figure 2, the hypothesis "His fin-
gers feel burnt immediately" forms a valid causal
fact with the premise "Tom holds a copper block

Figure 2: An example of causal reasoning and conceptual
explanation generation from an instance of the e-CARE

dataset

by hand and heats it on fire.", as observing the
aforementioned premise causes the corresponding
hypothesis, and the ask-for indicator "effect" signi-
fies that the hypothesis is an effect of the premise
not the cause. In our case, causal reasoning task
is casted as a prediction problem, where the input
of the model is candidate causal fact containing a
premise and hypothesis pair, and the output is a
score measuring the reasonableness of the candi-
date causal fact.

3.2.2 Explanation generation task
Given a premise and the correct hypothesis, the
model will generate an explanation in natural lan-
guage to highlight why a causal relationship exists
between the premise and the correct hypothesis,
and finally reach a plausible conceptual explana-
tion which goes beyond the isolated facts and reveal
the principle of the causal mechanism. In figure
2, we want to find an explanation that connects
the premise “Tom holds a copper block by hand
and heats it on fire." to the effect “His fingers feel
burnt immediately". The corresponding explana-
tion points out the nature of copper which causes
anyone holding heated copper to feel their fingers
burnt immediately.

3.3 Models

The causal reasoning task is framed as a prediction
task: given a premise and a choice of two hypothe-
ses, the hypothesis with the highest reasonableness
score will be chosen as the correct one. The authors
evaluated the performance of several state-of-the-
art discriminative language models on the causal
reasoning task, namely BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019b), and ALBERT (Lan et al., 2019), as well
as autoregressive generative pretrained language
models adapted for the predictive causal reasoning
task such as GPT2 (Radford et al., 2019) and BART
(Lewis et al., 2020).

For the explanation generation task, the authors
trained a GRU-based Seq2Seq model (Chung et al.,



2014) and finetuning GPT2 (Radford et al., 2019).
Given a premise and the correct hypothesis, the
ask-for indicator denotes which of the premise or
the hypothesis is the cause or the effect. From this
information, we are able to construct the input to
the models in the form of the concatenation of the
cause and effect from the premise and hypothesis.

3.4 Metrics

We will employ accuracy to evaluate the perfor-
mance of the causal reasoning models, where a
correctly matched premise and hypothesis would
be classified as one correct prediction instance. To
evaluate generated explanations, there are a num-
ber of metrics that are commonly in use such as
BLEU (Papineni et al. (2002)) and ROUGE (Lin
(2004)). We will be evaluating our models on
BLEU, ROUGE and perplexity.

4 Baseline experimental setup

For baseline reproduction, we very closely fol-
lowed the setup presented in (Du et al., 2022) for
both the causal reasoning and explanation gener-
ation tasks. It is important to note that while the
authors published their code repository, it had bugs
and was not in a runnable state. The baseline repro-
duction required us to fix their implementation for
all tasks.

We’d like to note here that the test set is blind,
i.e. it is not publicly available. Benchmarking on
the test set requires additional author permissions
to submit to their task leaderboard. As such, we
leave submission to this leaderboard to future work,
once we have substantial improvements. We report
the relevant dataset splits in table 1. For both the
tasks, we used a g4dn.2xlarge AWS instance
with a 16GB Nvidia Tesla T4 GPU.

4.1 Causal reasoning

For the causal reasoning task, we finetuned all pre-
trained large language models for 5 epochs with a
batch size of 64 and learning rate of 2e-5. Note that
while the authors present baseline results with a
learning rate of 1e-5, we empirically found a learn-
ing rate of 2e-5 to work better consistently for all 8
pretrained models tested.

4.2 Explanation generation

For the explanation generation task, we finetuned
GPT2 for 10 epochs with a batch size of 32 and
learning rate of 2e-5. We ran multitask learning

Ask-for Train Dev Test Total
Cause 7,617 1,088 2,176 10,881
Effect 7,311 1,044 2,088 10,443
Total 14,928 2,132 4,264 21,324

Table 1: e-CARE dataset split distribution by question type

with GPT2 to generate cause-effect explanations
and then perform the reasoning task.

Further, for generation, while Du et al. use a rep-
etition penalty of 1.5, we hypothesized that since
the model needs to reason about entities present
in the premise and hypothesis, it at least needs to
repeat the entities that are causally linked in these
sentence pairs. Based on this hypothesis, we re-
duced the repetition penalty to 1.2, and saw slightly
better results. For consistency, all results in the
rest of this work are reported with these modified
hyperparameters.

The training/development/test split consists of
10,491/2,012/3,814 explanation sentences respec-
tively.

5 Experiments

In this section, we describe the techniques explored
for the two tasks on the e-CARE dataset. We pri-
marily focus on the explanation generation task
(approaches detailed in sections 5.2, 5.3 and 5.4).
For the causal reasoning task, we implement sev-
eral baselines from (Du et al., 2022) and verify
if the CausalBERT (section 5.1) model can yield
improvements over them.

5.1 CausalBERT
For the causal reasoning task, we explore Causal-
BERT (Li et al., 2021b) and its extensions (Li et al.,
2021a). CausalBERT is a three-stage sequential
transfer learning framework (Li et al., 2019): (1)
large-scale unsupervised pre-training tasks with
language modeling objective, (2) self-supervised
pre-training with the different causal pairs, and
(3) direct causal pair classification or further fine-
tuning. The second stage involves two different
pre-training tasks, namely causal pair classification
or ranking. The architecture of CausalBERT is
highlighted in figure 3.

5.2 Prompting
For the explanation generation task, the first idea
we explore is prompting GPT-2 by giving a seman-
tic structure to the input sentence pairs and ending
them with a prompt that is finetuned to elicit an



Figure 3: The CausalBERT architecture

Figure 4: Prompt templates for explanation generation

explanation. This is carried out in two ways, us-
ing: (1) English words, and (2) Special tokens.
The modifications to the input are described in Fig-
ure 4. Here, {cause} denote the cause sentence,
{effect} the effect sentence, and {generation} is the
placeholder for ground truth or model output. The
models presented in Section 4 use a simple concate-
nation of the cause and effect sentence pairs. We
hypothesize that this would make it difficult for the
model to relate them as a cause-effect pair as it is
not inherently implied by the structure underneath.

Note that prompting with special tokens requires
adding the tokens <|cause|>, <|effect|>,
<|explanation|> to the tokenizer vocabulary,
which is not required when prompting with words.
On fine-tuning on the augmented dataset, we ex-
pect the model to enter an "explanation generation
mode" after encountering <|explanation|> in
case of special tokens, and the explanation is that
in case of prompting with words.

5.3 Common sense knowledge injection

Following the approach in Bhagavatula et al.
(2019), we use ATOMIC20

20 (Bosselut et al., 2019)
as our large external knowledge base to inject real-
world common sense from a knowledge graph
of nodes describing entities and edges describ-
ing relationships that links the entities. For in-
stance, "node(money)-relationship(has property)-
node(earned by working)", or "node(a mechanic)-
relationship(is located at)-node(garage)". This
knowledge is transferred to existing language mod-
els by training them using the COMET transformer
which trains on tuples from the knowledge graph
to predict the target phrases in the graph given
source/head phrases.

We use a pretrained COMET(BART) model and
fine-tune it on the task of explanation generation.
We use a concatenation of premise and hypothesis
from the e-CARE dataset as input to generate an
explanation for causality.

5.4 Question generation and answering

Another way we can formulate the explanation gen-
eration task is to view it as a two-part open-domain
question-answering task: (1) question generation
and (2) question answering. We describe this pro-
cess at a high-level in figure 5.

Figure 5: Question generation and question answering
pipeline for conceptual explanation generation

5.4.1 Question generation
The question generation task is formulated as fol-
lows: given a premise and the correct hypothesis
as a cause and effect pair, generate a question such
that the answer would form an explanation for the
causal relationship. Stasaski et al. (2021) has built
a pipeline which extracts causal relations from pas-
sages of input text, retrieve cause and effect pairs
from the passage, and feed these pairs to a neu-
ral question generator. Their work results in a
novel and publicly available collection of cause-
and-effect questions. They have used a Prophet-
Net model (Qi et al., 2020) fine-tuned on SQuAD
1.1 (Rajpurkar et al., 2016) to generate their ques-
tions. We adopt their methodology to solve our
question generation task, given that we can skip
the causal relationship extraction (since we have
the cause-effect sentence pair). As shown in 5, we
have concatenated the cause and effect pairs using
various templates to evaluate how to best present
these pairs such that the question generation net-
work outputs the most relevant questions.

5.4.2 Question answering
For our task, we use a closed-book T5 XL (Raffel
et al., 2019) pretrained question answering model
(google/t5-xl-ssm-nq), primarily because
time and space constraints presented by open-book
question answering frameworks such as BERT-
serini (Yang et al., 2019a) which integrates BERT



with the open-source Anserini (Yang et al., 2017)
information retrieval toolkit. Large language mod-
els are sometimes able to encode a surplus of
factual knowledge, which allows them to per-
form question-answering without explicit context.
Roberts et al. (2020) fine-tuned the T5 language
model (Raffel et al., 2019) to answer questions
without inputting any additional information or con-
text. They performed continual pre-training with
salient span masking over the Wikipedia corpus,
and fine-tuned the model on specific QA datasets.
Although this methodology successfully obtained
competitive results in closed-book open-domain
QA, the GPT3 model (Brown et al., 2020) performs
comparatively well without any gradient updates
or fine-tuning. An example generated answer from
GPT3 is shown in figure 6.

Figure 6: Explanation generation through question generation
and answering.

6 Results and Discussion

Table 2 presents our results on the causal reasoning
task. We benchmark a total of 8 models, 5 dis-
criminative models pretrained with a masked lan-
guage modeling objective, and 3 generative auto-
regressive models with a sequence classification
head. As discussed in section 4.1, on optimizing
the learning rate, we are able to marginally exceed
the baseline performance numbers presented by Du
et al. for all models except XLNet.

Table 3 shows the results of baseline models over
the explanation generation task. Our baseline im-
plementation for BART and COMET-BART mod-
els outperforms the baseline GPT-2 implementation
by a large margin. Our GPT-2 implementation also
slightly outperforms the reference implementation
using prompting and hyperparameter tuning.

6.1 Quantitative analysis
6.1.1 Causal Reasoning
In line with the findings of e-CARE authors, we
find that the vanilla BERT model (Devlin et al.,

2Reference implementation results available on Du et al.’s
official Github repository.

2019) performs better than its variants. In gen-
eral, the masked language models perform better
than the auto-regressive models on the reasoning
task. We hypothesize that BERT outperforms the
other models because its pre-training is based on
Wikipedia and the BooksCorpus. These datasets en-
code a lot of concepts, properties, and relationships
between entities and concepts like copper, ther-
mal conductance, etc. On the other hand, models
like GPT2 are trained on large-scale social media
data which is full of real and fake news, opinions,
toxicity, jokes, etc. that are largely irrelevant to
reasoning between a cause and its effect.

Finally, from a cursory look of the dataset, we
noticed that the premise and the two hypothe-
ses sentences are usually short, and often con-
tain repeating entities. For instance, in the cause-
effect pair <"Adding rock into acid.", "Rock dis-
solved.">, the entity rock repeats. However, the
case of the first letter ’r’ is different in the two
sentences. Given the reasoning task is happening
between entities in the two sentences, we hypoth-
esized that it’s better to use a model that’s agnos-
ting to case instead of being sensitive. Therefore,
we tried bert-base-uncased in addition to
bert-base-cased. In line with our hypothesis,
we saw a performance increase of +1.12% (75.66%
to 76.78%), which is a significant improvement
over the best results presented in the baseline.

Finally, we observe that CausalBERT (Li et al.,
2021b) did not improve the causal reasoning ability,
even though that it is trained to make distinctions
between causes, effects, and confounders. We hy-
pothesize that this is because of lack of relevant
knowledge being injected, and explore this in more
detail in qualitative analysis in Section 6.2.1

6.1.2 Explanation Generation
For explanation generation, we tried multiple
approaches quantitatively compared in Table 3.
BART significantly outperforms all GPT-2 based
models on both BLEU and ROUGE metrics,
achieving an average-BLEU score of 47.46, and
COMET-BART further improves for knowledge
injection in BART and results in average-BLEU
score of 52.52. We can see that our best perform-
ing model in terms of all metrics is COMET-BART.
This could be indicative of the fact that the mod-
els required external facts to generate explanations
closer to the ground truth.

Multitask learning was another successful ap-
proach that not only yielded improved performance

https://github.com/Waste-Wood/e-CARE##51-causal-reasoning-task


Our Implementation Reference2Implementation(Du et al., 2022)
Model Dev Set Dev Set Test Set (publicly unavailable)
Masked Language Models
BERT (base,uncased) 76.78% NR NR
BERT (base,cased) 75.66% 75.47% 75.38%

AlBERTa (base,v2) 74.25% 73.97% 74.6%

XLNet (base,cased) 74.2% 75.61% 74.58%

CausalBERT (Li et al., 2021b) 73.45% NR NR
RoBERTa (base) 71.34% 70.64% 70.73%

Causal/Autoregressive Language Models
BART (base) 73.83% 73.03% 71.65%

GPT2 70.64% 70.36% 69.51%

GPT 69.75% 67.59% 68.15%

Table 2: Accuracy for various pretrained large language models on the Causal Reasoning task.
NR ≡ Not Reported.

Model Accuracy BLEU-1 ↑ BLEU-4 ↑ AVG-BLEU ↑ ROUGE-l ↑ Perplexity ↓
Our Implementation for GPT-2 with ablations for prompting and multitask learning (Dev Set)
GPT2CR 70.64% - - - - -
GPT2EG - 53.79 18.2 31.74 35.23 6.69

+ Prompting (Words) - 54.64 19.91 33.26 36.14 6.59

+ Prompting (ST) - 54.16 16.52 30.69 31.55 7.99

GPT2-largeEG - 53.90 24.24 35.96 42.46 4.73
+ Prompting (Words) - 52.41 24.24 34.69 40.47 4.95

+ Prompting (ST) - 56.08 22.37 36.09 40.49 4.86

GPT2CR−EG 72.62% 55.06 23.37 35.63 35.93 6.44

+ Prompting (Words) 72.81% 57.14 23.92 36.73 36.15 6.41

+ Prompting (ST) 72.05% 56.47 22.57 35.53 35.27 6.62

Our Implementation for BART and COMeT-BART (Dev Set)
BARTEG - 62.68 37.59 47.46 39.75 8.42

COMeT-BARTEG - 67.55 42.82 52.52 46.25 3.92

Table 3: Results and ablations for GPT2 and BART-based models on the Explanation Generation task.
The CR-EG subscript denotes multitask learning for causal reasoning and explanation generation.

Up arrow ≡ higher is better. Down arrow ≡ lower is better. NR ≡ Not Reported. ST ≡ Special Tokens.

Model Accuracy BLEU-1 ↑ BLEU-4 ↑ AVG-BLEU ↑ ROUGE-l ↑ Perplexity ↓
Reference Implementation (Du et al., 2022) (Test Set; publicly unavailable, NR on Dev Dataset)
GPT2CR 69.51% - - - - -
GPT2EG - 55.17 18.79 33.17 32.05 6.87

GPTCR−EG 71.58% 56.32 22.36 35.70 34.88 6.64

Table 4: Results for reference baseline implementation1 (Du et al., 2022) on the Explanation Generation task.
Up arrow ≡ higher is better. Down arrow ≡ lower is better.

for GPT-2 on the explanation generation task, but
also on the causal reasoning task. For instance,
GPT-2 with prompting achieves an accuracy of
72.81% compared to 70.64% when only the causal
reasoning task is performed in isolation.

We also explored prompting techniques that im-
proved the performance of baseline GPT-2 model.
Prompting with English words to give the cause
effect pair some semantic structure consistently per-
forms better for GPT-2 than without any prompt.

For prompting with special tokens, we observe
that the model gets confounded in the initial epochs
with a very high perplexity. With more epochs,
while it slowly reaches close to the performance
achieved without prompting. This points to the pos-
sibility that fine-tuning with special tokens, while
potentially promising, requires more data and train-
ing epochs than prompting with words already in
model vocabulary.

For the large version of GPT-2 gpt2-large,
we observe that prompting techniques had a smaller
impact on its performance, this could possibly be

because having a larger capacity makes it insensi-
tive to addition of a few special tokens. Further,
we noticed that while GPT2-large BLEU scores
are similar to GPT2-base, its rouge (recall) scores
are higher, again indicating that the larger model is
able to recollect more words from its pretraining
than the smaller model.

6.2 Error analysis

6.2.1 CausalBERT
We qualitatively examined the results of the Causal-
BERT model and tabulated examples in table 8. We
can see from the first example that choosing the
correct hypothesis from "There is gravity among
planets" and "There is magnetic force among plan-
ets", external knowledge of gravitational force is
required. Similarly, in the second example there is
no causal deduction required to choose the correct
hypothesis. The correct hypothesis can only be cho-
sen by awareness of the fact that there are two types
of polypropylene and not five. Lastly in the final
premise, "he" could refer to "Tom" or the "worker"



which makes this example much more confusing.
The correct hypothesis being chosen requires the
connection between rum and sugarcane to be appar-
ent. Ultimately, from our qualitative analysis of the
CausalBERT results we can observe there might be
a lack of external knowledge in the model. This is
substantiated by the fact that CausalBERT was fine-
tuned on Choice Of Plausible Alternatives (COPA)
which consists of only 1000 questions. It may not
have been possible to inject knowledge relevant to
e-CARE dataset with a corpus of this size. This
could be a reason why fine-tuning CausalBERT did
not improve causal reasoning performance.

6.2.2 COMET-BART
Upon examining the explanations generated by
COMET-BART we can see that the quality of the
generated explanations is very high.

There are a very high number of instances where
the generated explanations sufficiently explain the
relation between the premise and the hypothesis
while being syntactically and semantically sound.
However, since our metrics BLEU and ROUGE
focus more on the similarities between the gold
standard and generated explanations, these expla-
nations are rejected as they differ from the gold
standard in terms of vocabulary, tense and num-
ber. Such examples are displayed in table 6. We
can see in the final example in the table that the
generated explanation differs from the ground truth
only in the word "extremely" which is a synonym
of the word "intensely" in the ground truth. The
generated explanation in this case should receive a
full score since it is semantically equivalent to the
ground truth. However, since our metrics BLUE
and ROUGE do not consider semantics and are fo-
cused on matching n-grams, this sentence achieves
lower BLEU and ROUGE scores.

There is another kind of error apparent in the
generated explanations. On certain occasions, the
model links the premise in hypothesis with a state-
ment that is technically true but not the underlying
explanation. These errors can be better explained
with the examples in the table 5. In the first exam-
ple, while it is probably implied from true that the
keepers encourage reproduction of the animals, it is
not a sufficient explanation of why the hypothesis
is implied. Similarly, in the second example, it is
true that "Re-settlements take place" but that is a
generic statement that is true. It does not explain
why if Jack’s country was at war, he was resettled.
These errors could possibly be attributed to how

the premise and hypothesis are passed to the model
which is via a simple concatenation which does
not necessarily require the model to sufficiently
explain why the second statement is implied if the
first is true.

There are also cases where the ground truth does
not sufficiently explain causality but the generated
explanations do. Such examples are displayed in
table 7. Consider the first example. Given the
premise and hypothesis, the generated explanation
"Ponds occur in suitable areas" is intuitively a bet-
ter explanation than "Areas provide water". Simi-
larly, in the next explanation while the ground truth
"Cigarettes have significant effects" is a true a state-
ment it does not explain the reason why the indi-
viduals fingers are stained. A sufficient explanation
is provided by the model which is that "cigarettes
can stain a finger". These examples show that even
though there are certain inconsistencies and inac-
curacies in dataset ground truths, the model is able
to generate fairly logical and appropriate explana-
tions.

Figure 7: Three different templates used for Question
Generation using ProphetNet (Qi et al., 2020) from a causal

pair and the corresponding generated questions

6.2.3 Question Generation and Question
Answering

For the question generation and answering ap-
proach, we generated questions using three dif-
ferent templates used to combine the premise and
hypothesis. This process is explained. in figure 7.
We qualitatively analyzed the generated questions
and answers (generated explanations) for causality.
We have tabulated some examples in table 10. We
can see for the first example that the question gen-
erated using template 1 is not syntactically correct
and while the answer is a relevant statement, there
is loss of context while converting to a question
and then generating the answer for that incorrect
question. This trend is observed throughout the
results. It also seems that the model generates very
specific question instead of generating a general
question regarding the hypothesis. The answers
generated to the questions are also sometimes in-



Explanations
Premise Hypothesis Ground Truth Generated

Spring is the season for ani-
mals to reproduce.

The keepers put them in con-
tact with each other.

Reproduction requires con-
tact.

Keepers encourage repro-
duction.

Jack’s country is at war. He was resettled in Russia. Resettlement occurs when
the refugee has no hope of
returning safely to the home
country.

Resettlements take places.

Tom followed the flamingo
to go back their habitat.

He found that there are a lot
of flamingos.

Flamingos live in groups. Flamingos live in habitats.

Table 5: Examples of Insufficient Explanations Generated by COMET-BART

Explanations
Premise Hypothesis Ground Truth Generated

Black pulled out his eye-
lashes for beauty.

Black’s sweat always drips
into his eyes.

Eyelashes keep sweat out of
the eye.

Eyelashes help to control
the amount of sweat drip-
ping into eyes.

Mary read some papers. She knew lots of details. Paper gives details. Details appear in papers.
Jack added nitrites into the
water.

The catfish died earlier than
the scalefish in the water.

Nitrites are more toxic to
catfish than scalefish.

Nitrites kill catfish faster
than scalefish.

Jack’s interest is to study hu-
man species.

He decides to choose anthro-
pology as his major in col-
lege.

Anthropology is the disci-
pline devoted to the study of
the human species.

Anthropology is the scien-
tific study of human species.

Madame Curie studied ra-
dium all her life.

Her body had excessive ra-
diation levels.

‘Radium is intensely ra-
dioactive.

Radium is extremely ra-
dioactive.

Table 6: Example explanations generated using COMET-BART demonstrating the failure of BLEU and ROUGE as evaluation
metrics.

correct and irrelevant as seen by the answer to the
question "What did Black do for beauty?". The
answer "Made up to be beautiful? Asked Dixon’s
wife" is completely unrelated to the premise and
hypothesis and this is due to lack of context i.e., if
somehow the fact that this situation was focused on
eyelashes and sweat was included in the question,
a better question could have been generated. Since
there is loss of information while transforming the
combination of premise and hypothesis into a an
"incorrect" question, the generated answer seems
random in such cases. Ultimately, we observe that
in many cases the model is unable to generate a
question that would be conducive to explanation
generation.

7 Conclusion

Given the task of causal reasoning and explana-
tion generation on the e-CARE dataset, we were
able to exceed baseline performance in causal rea-
soning and explanation generation using multiple
techniques like prompting and knowledge graph
based injection (COMET).

For future directions, an interesting technique
followed in the field of pragmatic reasoning for
language models is sampling and re-ranking a gen-
erative model’s outputs based on an independent
and separate re-ranking model that evaluates an
objective closer to causal strength.

Also, noting the poor performance of our ques-
tion generation and answering for causal explana-
tion generation, we must explore other ways of
generating questions from premise and hypothe-

sis. This could be by providing additional context
while generating questions or while using a differ-
ent model to decide what kind of question would
best combine the premise and the hypothesis.
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A Appendix

Figure 8: Validation perplexity and BLEU-4 charts for GPT-2 with Multitask Learning. Jointly performing causal reasoning and
explanation generation not only increases performance on both tasks, but also mitigates overfitting

Premise Ask-For Hypothesis 1 Hypothesis 2
The major planets interact. Effect There is gravity among the

planets.
There is magnetic force
among the planets.

Tom studied the types of
polypropylene.

Effect He found that they came in
five types.

He found that they came in
two types.

He got some rum. Cause The worker fermented some
sugar cane with yeast.

Tom went out and want to
hunt some cottontails

Table 8: Examples of Incorrect Hypothesis Selected by CausalBERT

Figure 9: Generated explanation from BERTserini.



Model BLEU-1 ↑ BLEU-4 ↑ AVG-BLEU ↑ ROUGE-l ↑
Question Template 1 42.15 4.29 17.10 4.17

Question Template 2 44.74 4.72 17.89 4.62

Question Template 3 44.06 4.62 18.22 4.82

Table 9: Results for our question generation followed by question answering approach.

Test Data Question Template 1 Question Template 2 Question Template 3
Premise Hypothesis Ground Truth Question Answer Question Answer Question Answer

Tom has
good eye-
sight.

Tom found
the poi-
sonous
snake in
time.

Eyesights
play roles.

Tom has good
eyesight such
that he found
the poisonous
snake in time?

Tom’s
good eye-
sight and
keen sense
of smell

What is
the cause
of tom
finding the
poisonous
snake?

His father’s
illness
episodes of
tuberculosis

How was
tom able
to find the
poisonous
snake?

His nose,
or on his
shoulder,
etc

Black
pulled
out his
eyelashes
for beauty.

Black’s
sweat
always
drips into
his eyes.

Eyelashes
keep
sweat out
of the eye.

What did black
do for beauty?

Made up to
be beauti-
ful? Asked
Dixon’s
wife

Why did
black pull
out his
eyelashes?

To reduce
eye bleeding
episodes)seen

Does
black’s
sweat drip
into his
eyes?

Glasses are
never worn
on black
days"
(page 2

Table 10: Example generations using Question-Generation Question-Answering Approach following 3 Different Templates


